A general duality theorem for the Monge-Kantorovich transport problem
نویسندگان
چکیده
The duality theory of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel. Our main result states that in this setting there is no duality gap, provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial transport of masses 1− ε from (X,μ) to (Y, ν), as ε > 0 tends to zero. The classical duality theorems of H. Kellerer, where c is lower semi-continuous or uniformly bounded, quickly follow from these general results.
منابع مشابه
Characterization of the Optimal Plans for the Monge-kantorovich Transport Problem
We present a general method, based on conjugate duality, for solving a convex minimization problem without assuming unnecessary topological restrictions on the constraint set. It leads to dual equalities and characterizations of the minimizers without constraint qualification. As an example of application, the Monge-Kantorovich optimal transport problem is solved in great detail. In particular,...
متن کاملOn the Duality Theory for the Monge–Kantorovich Transport Problem
This article, which is an accompanying paper to [BLS09], consists of two parts: In section 2 we present a version of Fenchel’s perturbation method for the duality theory of the Monge– Kantorovich problem of optimal transport. The treatment is elementary as we suppose that the spaces (X,μ), (Y, ν), on which the optimal transport problem [Vil03, Vil09] is defined, simply equal the finite set {1, ...
متن کاملOptimal Transportation Problem by Stochastic Optimal Control
We solve optimal transportation problem using stochastic optimal control theory. Indeed, for a super linear cost at most quadratic at infinity, we prove Kantorovich duality theorem by a zero noise limit (or vanishing viscosity) argument.. We also obtain a characterization of the support of an optimal measure in Monge-Kantorovich minimization problem (MKP) as a graph. Our key tool is a duality r...
متن کاملA Gradient Descent Solution to the Monge-Kantorovich Problem
We present a new, simple, and elegant algorithm for computing the optimal mapping for the Monge-Kantorovich problem with quadratic cost. The method arises from a reformulation of the dual problem into an unconstrained minimization of a convex, continuous functional, for which the derivative can be explicitly found. The Monge-Kantorovich problem has applications in many fields; examples from ima...
متن کاملDuality for Borel Measurable Cost Functions
We consider the Monge-Kantorovich transport problem in an abstract measure theoretic setting. Our main result states that duality holds if c : X × Y → [0,∞) is an arbitrary Borel measurable cost function on the product of Polish spaces X,Y . In the course of the proof we show how to relate a non-optimal transport plan to the optimal transport costs via a “subsidy” function and how to identify t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009